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SUMMARY

Latent class and the Grade of Membership (GoM) models are two examples
of latent structure models. Latent class models are discrete mixture models. The
GoM model has been originally developed as an extension of latent class models to
a continuous mixture. This note describes a constrained latent class model which
is equivalent to the GoM model, and provides a detailed proof of this equivalence.
Implications for model fitting and interpretation are discussed.

Some key words: Class membership, Contingency tables, Latent structure, Mix-
ture models, Stochastic subject.

1 Introduction

Let x = (x1, x2, . . . , xJ) be a vector of polytomous manifest (observable) variables,
where xj takes on values lj ∈ Lj = {1, 2, . . . , Lj}, j = 1, 2, . . . , J , and Lj denotes the
number of possible outcomes. Data of this structure recorded on a number of individu-
als are common in the social, behavioral, and health sciences. They are often analyzed
via latent variable models which assume that individual responses differ according to
some unobservable value. Formulating a latent variable model involves specifying a dis-
tribution of latent variables and a conditional distribution of manifest variables given
latent variables; the former is usually chosen according to some plausible assumptions.

Latent class and the GoM models are two examples of latent structure models.
Latent class models rely on a discrete distribution of latent variables over a number
of categories, reflecting the assumption that individuals are full members of one of the
latent classes (Lazarsfeld & Henry, 1968; Goodman, 1974). The GoM model assumes a
continuous distribution of latent variables over a number of categories which reflects the
original idea that individuals can be partial members in more than one class (Woodbury
et al., 1978). Other examples of continuous mixture models are latent trait models,
with the Rasch model being one of the most widely used (Rasch, 1960; Fischer &
Molenaar, 1995).

Most intuitively, the difference between latent class and the GoM models should be
similar to that between latent class and latent trait models in general. As described by
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Bartholomew & Knott (1999), latent class models can be thought of as special cases
of latent trait models in which latent variable distribution is constrained to discrete
probability masses. Thus, comparing the GoM and latent class models, Manton et al.
(1994b) concluded: “latent class model is nested in the GoM model structure...”, but
“...if we allow latent class model to have more classes, then it is potentially possible
to “fit” the realized data set as well as with GoM” (p. 45). On the other hand, in his
review of Manton et al. (1994b), Haberman (1995) suggested that the GoM model is
a special case of latent class models since a set of constraints imposed upon a latent
class model can specify a distribution of manifest variables which is identical to that
provided by the GoM model.

This work explains in detail how the GoM model could be thought of as a gen-
eralization and as a special case of latent class models at the same time. Section 2
develops a common notation which illuminates the GoM model as a generalization of
latent class models. Following Haberman (1995), section 3 derives a special case of a
latent class model with constraints which is shown to be equivalent to the GoM model,
therefore providing a latent class representation. Section 4 discusses implications for
the GoM model interpretation. Finally, the discussion in Section 5 situates this work
in the context of available literature.

2 The GoM Model as a Generalization of Latent Class
Models

This section formally introduces latent class and the GoM models using a common
notation. We first define distributions of latent variables and conditional distributions
of manifest variables, and then derive marginal distributions of manifest variables.

Let x = (x1, x2, . . . , xJ) be a vector of polytomous manifest variables taking on
values lj ∈ Lj = {1, 2, . . . , Lj}, j = 1, 2, . . . , J . Then X =

∏J
j=1 Lj is the set of all

possible outcomes for vector x.

2·1 Latent Class Models

Let y = (y1, y2, . . . , yK) be a latent membership vector defined by

yk =

{
1, if member of class k, k = 1, 2, . . . ,K,
0, otherwise,

with probability density function

f(y) =

{
πk, if yk = 1 and yl = 0, l 6= k, k = 1, 2, . . . , K
0, otherwise.

Denote the conditional probability of manifest variable xj taking on value lj , given
membership in kth class, by

λkjlj = pr(xj = lj |yk = 1), k = 1, 2, . . . , K, j = 1, 2, . . . , J, lj = 1, 2, . . . , Lj .(2·1)
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Since full membership vector y has exactly one nonzero component, the conditional
probability for xj , given the membership vector, can be rewritten as

pr(xj = lj |y) = λkjlj =
K∑

k=1

ykλkjlj .

The set of conditional probabilities must satisfy the following constraints:
∑

lj∈Lj

λkjlj = 1, k = 1, 2, . . . ,K; j = 1, 2, . . . , J.

Employing the local independence assumption (Lazarsfeld & Henry, 1968), latent
class models assume manifest variables are conditionally independent, given latent vari-
ables. Thus, conditional probability of observing response pattern l, given full mem-
bership vector y, is

fLCM (l|y) = pr(x = l|y) =
J∏

j=1

(
K∑

k=1

ykλkjlj

)
, l ∈ X .

Integrating out latent variable y, we obtain the marginal distribution of the manifest
variables under the latent class model in the form of a discrete mixture:

fLCM (l) = pr(x = l) =
∫

fLCM (l|y)f(y)dy =
K∑

k=1

πk

J∏

j=1

λkjlj , l ∈ X . (2·2)

Equation (2·2) states that the probability of observing response pattern l is the sum
of the probabilities of observing l from each of the latent classes, weighted by their
relative sizes, πk.

2·2 The GoM Model

Let g = (g1, g2, . . . , gK) be a latent partial membership vector of K nonnegative random
variables that sum to 1. Now K is the number of extreme profiles in the GoM model.
Analogous to equation (2·1), denote extreme profile response probabilities by

λkjlj = pr(xj = lj |gk = 1), k = 1, 2, . . . , K; j = 1, 2, . . . , J ; lj = 1, 2, . . . , Lj .(2·3)

Parameters λkjlj are conditional probabilities of responses in the extreme cases when
one of the membership scores equals 1.

The main assumption of the GoM model is the convexity of conditional response
probabilities. Given partial membership vector g ∈ [0, 1]K , the conditional distribution
of manifest variable xj is given by a convex combination of the extreme profiles’ response
probabilities, i.e.,

pr(xj = lj |g) =
K∑

k=1

gk · pr(xj = lj |gk = 1)

=
K∑

k=1

gkλkjlj , j = 1, 2, . . . , J, lj = 1, 2, . . . , Lj . (2·4)
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Applying the local independence assumption, we obtain the conditional probability
of observing response pattern l as

fGoM (l|g) = pr(x = l|g) =
J∏

j=1

pr(xj = lj |g) =
J∏

j=1

(
K∑

k=1

gkλkjlj

)
, l ∈ X .

Let us denote the distribution of g by D(g). Integrating out latent variable g, we obtain
the marginal distribution for response pattern l in the form of a continuous mixture

fGoM (l) = pr(x = l) =
∫

fGoM (l|g)dD(g) =
∫ J∏

j=1

(
K∑

k=1

gkλkjlj

)
dD(g), l ∈ X . (2·5)

Note that lj appears as part of the index of the conditional probability in equations (2·1)
and (2·3). Also note that since partial membership vector can have multiple non-zero
entries, the integral in equation (2·5) does not simplify to a summation as does the
integral in equation (2·2).

Under the common notation developed in this section, latent membership vector y
is a constrained version of latent membership vector g. Thus, the K-class latent class
model is a special case of the K-profile GoM model with constraints placed on the
distribution of the membership vector.

3 Latent class representation of the GoM model

Let us now relax the requirement of equality of the number of latent classes and extreme
profiles. Following Haberman (1995), we construct a latent class model such that the
marginal distribution of manifest variables is exactly the same as that under the GoM
model.

Assume integer K denotes the number of extreme profiles and J denotes the number
of manifest variables as before. Consider a vector of J polytomous latent variables
z = (z1, z2, . . . , zJ), each taking on values from the set of integers {1, 2, . . . , K}. Vector
z can be thought of as defining latent classes. Denote by Z = {1, 2, . . . , K}J the set
of all possible vectors z. Then X ×Z is the index set for the cross-classification of the
manifest variables x and latent classification variables z.

As apparent from equations (2·2) and (2·5), to obtain a latent class representation
of the GoM model one must find a way to interchange the summation and the product
operator in equation (2·5). The following lemma provides algebra which allows us to do
so. Lemma 3.1 will also by instrumental in the development of the latent class model
in this section.

Lemma 3.1 For any two integers J and K, and for any two sets of real numbers
{ak, k = 1, 2, . . . , K} and {bkj , k = 1, 2, . . . ,K, j = 1, 2, . . . , J},

J∏

j=1

K∑

k=1

akbkj =
∑

z∈Z

J∏

j=1

azjbzjj , (3·6)

where z = (z1, z2, . . . , zJ) is such that z ∈ Z =
∏J

j=1{1, 2, . . . , K}.
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Proof The left hand side of equation (3.1) is

(a1b11 + a2b21 + . . . + aKbK1)(a1b12 + a2b22 + . . . + aKbK2) . . . (3·7)
. . . (a1b1J + a2b2J + . . . + aKbKJ).

Multiplying these J sums out, we get a summation in which each term has J multipliers
of a’s and corresponding, according to the k-index, J multipliers of b’s. Each product
of a’s, as well as each product of b’s, can therefore be indexed by a vector z ∈ Z, where
zj would index the jth multiplier:

J∏

j=1

K∑

k=1

akbkj =
∑

z∈Z

J∏

j=1

azjbzjj .

Thus, the order of the product and the summation can be interchanged by changing the
space over which the summation is performed and by substituting zj-indices instead of
k-indices.

To continue developing the latent class model, let us define a distribution over
latent classes z ∈ Z conditional on the distribution of membership vector g ∈ [0, 1]K

as described in the following lemma.

Lemma 3.2 If a K-dimensional vector of random variables (g1, g2, . . . , gK) has a joint
distribution D(g) on [0, 1]K , such that g1 + g2 + . . . + gK = 1, then

πz = ED




J∏

j=1

gzj


 (3·8)

is a probability measure on Z.

Proof Values of πz are nonnegative because they are defined by expected values of
products of nonnegative random variables. By using properties of expectation and
applying Lemma 3.1 with ak = gk and bkj = 1, for all k, for all j, one can show that
the sum of πz over Z equals 1. Since for all z ∈ Z, πz ≥ 0 and

∑
z∈Z πz = 1, πz is a

probability measure on Z.

From the functional form of probabilities πz, it follows that latent classification variables
z1, z2, . . . , zJ are exchangeable.

To specify the conditional distribution of the manifest variables given the latent
variables, we need two additional assumptions. First, assume that xj is independent
of za for a 6= j, given zj . That is,

pr (xj = lj |z) = pr (xj = lj |z1, z2, . . . , zJ)
= pr (xj = lj |zj) , (3·9)

where zj ∈ {1, 2, . . . , K} is the value of the latent classification variable, and lj ∈ Lj

is the observed value of manifest variable xj . In essence, equation (3·9) postulates
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that manifest variable xj is directly influenced only by the jth component of the latent
classification vector z.

Second, assume that conditional probabilities in equation (3·9) are given by

pr (xj = lj |zj) = λzjjlj , zj ∈ {1, . . . ,K}; j = 1, 2, . . . , J ; lj = 1, 2, . . . , Lj ,(3·10)

where the set of λs is the same as the set of the extreme profile probabilities for the
GoM model. These structural parameters must also satisfy the constraints:

∑

lj∈Lj

λzjjlj = 1, for all z ∈ Z, j ∈ {1, 2, . . . , J}.

Assuming further that manifest variables are conditionally independent given latent
classification variables, we obtain the probability of observing response pattern l for
the latent class model proposed by Haberman (HLCM) (1995) as

fHLCM (l) = pr (x1 = l1, x2 = l2, . . . , xJ = lJ)
=

∑

z∈Z
{pr(Z = z)pr (x1 = l1, x2 = l2, . . . , xJ = lJ |z)}

=
∑

z∈Z



πz




J∏

j=1

pr(xj = lj |zj)








=
∑

z∈Z



ED




J∏

j=1

gzj







J∏

j=1

λzjjlj






 , l ∈ X . (3·11)

The probability of observing response pattern l in equation (3·11) is the sum of the
conditional probabilities of observing l from each of the latent classes, weighted by the
latent class probabilities. The probability of latent class z is the expected value of a
J-fold product of the membership scores.

Next lemma proves the equivalence between the marginal probabilities of the ob-
served response patterns for the GoM and HLCM models.

Lemma 3.3 fGoM (l) = fHLCM (l) l ∈ X .

Proof Consider the marginal probability of an arbitrary response pattern l ∈ X for the
GoM model provided by equation (2·5). Applying lemma 3.1 with ak = gk, bkj = λkjlj ,
and using properties of expectation, we obtain

fGoM (l) =
∑

z∈Z



ED




J∏

j=1

gzj







J∏

j=1

λzjjlj






 .

Hence, we have

fGoM (l) = fHLCM (l) for all l ∈ X . (3·12)

The marginal probability distribution placed by the GoM model on manifest variables
coincides with the marginal distribution placed by the latent class model with con-
straints.
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Table 1: Low-dimensional example: Extreme profile probabilities for the GoM model.

item j λ1j λ2j

item 1 0.08 0.77
item 2 0.14 0.96
item 3 0.03 0.90

It follows that the GoM model can be reformulated as a latent class model with a
distribution on the latent classes given by a functional form of the distribution of
membership scores.

The details of the machinery are easy to see from a simple example of the GoM
model with two extreme profiles. Suppose that three dichotomous items have extreme
profile probabilities as in Table 1. Given membership scores g ∼ D(g), the latent
class representation of the GoM model has 23 = 8 latent classes determined by latent
classification vector z. Table 2 provides the latent class, as indicated by the values of
z, and the corresponding conditional response probabilities. The first latent class has
the conditional response probabilities from the first extreme profile for all items. The
second latent class has the conditional response probabilities for items 1 and 2 from the
first extreme profile, and from the second extreme profile for item 3. Going through
all the permutations in this fashion, we obtain the eight latent classes, where response
probabilities for the last class coincide with those of the second extreme profile.

Table 2: Low-dimensional example: Latent class representation of the GoM model.
Latent class and conditional response probabilities.

latent class z item 1 item 2 item 3 πz

1 (1,1,1) 0.08 0.14 0.03 ED(g1g1g1)
2 (1,1,2) 0.08 0.14 0.90 ED(g1g1g2)
3 (1,2,1) 0.08 0.96 0.03 ED(g1g2g1)
4 (1,2,2) 0.08 0.96 0.90 ED(g1g2g2)
5 (2,1,1) 0.77 0.14 0.03 ED(g2g1g1)
6 (2,1,2) 0.77 0.14 0.90 ED(g2g1g2)
7 (2,2,1) 0.77 0.96 0.03 ED(g2g2g1)
8 (2,2,2) 0.77 0.96 0.90 ED(g2g2g2)

4 Implications for interpretation

The standard GoM interpretation states that membership score gk “represents the de-
gree to which the element ... belongs to the kth set” (see Manton et al., 1994b, pg.
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3). For example, when a two-profile GoM model is fitted to discrete responses on J
questions from a disability survey, two estimated extreme profiles might be interpreted
as ‘healthy’ and ‘disabled’. Then, membership scores would show how healthy the sub-
ject is, relative to the ‘disabled’ and ‘healthy’ profiles. Although intuitively appealing
to many medical and social science researchers, this interpretation might be confusing
to statistical audiences. The latent class representation of the GoM model provides a
way to operationalize this interpretation.

To proceed, let us first recall two general rationales for interpreting latent structure
models described by Holland (1990), the random sampling and the stochastic subject.
The former rationale assumes that latent quantities define a probability of a correct
response among subjects with that value of the latent variable. Under this rationale,
latent parameters are employed in order to obtain legitimate values for probabilities
of observable response patterns in a population. Thus, following the random sampling
rationale, interpretations of the GoM model and of the latent class representation are
the same since they place identical probability structures on observed responses.

In contrast, the stochastic subject rationale assumes that human behavior is inher-
ently random, and a latent quantity determines response probabilities of the subject
with that value of the latent variable. Adopting this rationale, under the standard
formulation of the GoM model, each of J marginal response probabilities for a subject
is given by a linear combination of the extreme profiles’ response probabilities weighted
by the subject-specific GoM scores. The probability of observing a J-dimensional re-
sponse pattern is a J-fold product of these linear combinations. Each individual’s
responses on the manifest variables are being generated by a multinomial process with
fixed subject-specific probabilities. The fact that these probabilities are provided by
convex combinations motivates the standard partial membership interpretation for the
GoM membership scores.

Given J questions and K extreme profiles, the total number of latent classes in
the latent class representation of the GoM model is KJ . Each subject is considered to
be a complete member in one of these latent classes. To apply the stochastic subject
rationale to the latent class representation of the GoM model, recall that a distribution
on the latent classes is determined through membership scores. On an individual level,
subject’s membership score gk determines the expected proportion of questions that
the subject answers as if he was a full member of the kth extreme profile. Then,
specific combinations of questions answered from each profile correspond to particular
latent classes in the latent class representation of the GoM model. Notice the apparent
conditional exchangeability of the manifest variables in this interpretation. Taking
the health survey as an example, a subject with the membership score g2 = 1/3 would
answer on average a third of the survey questions as a person from the ‘disabled’ profile,
and two thirds as a person from the ‘healthy’ profile. Specific combinations of survey
questions that come from ‘healthy’ and ‘disabled’ profiles define the latent classes.

5 Discussion

The GoM model was developed in the late 1970s. GoM applications now cover a
wide spectrum of studies, ranging from studying depression (Davidson et al., 1989)
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and schizophrenia (Manton et al., 1994a) to analyzing complex genotype-phenotype
relations (Manton et al., 2004). However, the model remains to be relatively unfamiliar
to statistical audiences. Despite a multitude of published large-scale GoM applications,
there is a lack of statistical publications that explore basic GoM properties and provide
simple examples. The articles by Potthoff et al. (2000), Wachter (1999), Erosheva
(2005) are the only exceptions, as far as I can ascertain. The goals of this work
are twofold: first, to provide details on a close relationship between more familiar
latent class models and the GoM model, and, second, to point out implications of this
relationship for statistical audiences as well as for applied researchers in other fields.

This work explains how the GoM model could be thought of as a generalization
and as a special case of latent class models at the same time. By formulating latent
class and the GoM models within a common notational framework, we clearly illustrate
the GoM model as a generalization of latent class models when the number of latent
classes is restricted to be the same as the number of extreme profiles. On the other
hand, when the equality requirement on the number of classes and profiles is relaxed,
we show the GoM model as a special case of latent class models using the key algebraic
equality which allows us to interchange a summation and a product operators.

Although the GoM model as a generalization of latent class models was mentioned
frequently in various publications of Woodbury, Manton and colleagues, the details of
that relationship have not been formalized. The relationship in the other direction
was suggested by Haberman (1995) in a brief review but deserves a more in depth
explanation.

Note that Manton and colleagues provided a different form of an algebraic equality
that is similar to equation (3·12); see Tolley & Manton (1992, pg. 91) or Manton et al.
(1994b, pg. 53), for example. By using this equality the authors correctly concluded
that the marginal probability of observed responses under the GoM model depends
on the order-J moments of the membership scores, however, they did not make a step
further to consider the equivalence of the GoM and latent class models. More recent
publications also suggest that equivalence between the GoM and latent class models is
still a subject of a debate (e.g., see Manton et al., 2004, pg. 396).

Models that allow for specification of continuous latent constructs are increasingly
popular among researchers in social, behavioral, and health sciences since many latent
variables of interest can be thought of as having fine gradations. When substantive the-
ory justifies distinct latent categories as well as continuous latent variables, approaches
that describe heterogeneity of individuals with respect to those discrete categories often
focus on class membership probabilities. To give a few examples, Foody et al. (1992)
emphasize the utility of posterior probabilities of class membership in the area of re-
mote sensing; Muthen & Shedden (1999) model the class membership probability as a
function of covariates in a study of alcohol dependence; Roeder et al. (1999) address
a similar issue by modelling uncertainty in latent class assignments in a criminology
case study. The GoM model also addresses the issue of uncertainty in class member-
ship but by a different approach, the one which incorporates degrees of membership as
incidental parameters in the model. Understanding the partial membership structure
of the GoM model is essential when comparing GoM analytic capabilities with those
of alternative approaches.
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Discrete approximations to continuous distributions can be useful for purely com-
putational reasons. For example, Luceno (1999) approximates continuous univariate
random variables by discrete random variables sharing several low order moments. The
approximations help the author to avoid costly computation involved in using simula-
tion studies. Standard methods of estimating the GoM model such as those in Manton
et al. (1994b) do not rely on the GoM representation as a discrete mixture model and
have questionable properties (Haberman, 1995). Under Bayesian approach, Erosheva
(2003) developed a GoM estimation algorithm which is based on the structure pro-
vided by the latent class representation. The Bayesian estimation approach has several
advantages over likelihood-based estimation procedures for the GoM model (Erosheva,
2002, 2003).

Understanding the duality of the GoM model makes it easier to establish direct
connections with models from other areas. For example, although a clustering model
with admixture developed for genetic data (Pritchard et al., 2000) and the standard
GoM model seem quite different, deep similarities between these two independently
developed models become obvious when one considers the latent class representation.
Moreover, the latent class representation of the GoM model allows us to develop a
general class of mixed membership models. The generalization is flexible enough to
accommodate models for other data structures such as data that come from text doc-
uments (Erosheva et al., 2004). See Erosheva (2002) for a description of general class
of mixed membership models and more on connections between the GoM and other
closely related models.

The GoM model is not unique in its dual representation as a discrete and a contin-
uous mixture model. Lindsay et al. (1991) provide special cases which exhibit the same
property in the case of conditional estimation for the Rasch model. The key quality of
the Rasch model which allows for such dual representation in some special cases is the
form of sufficient statistics. For the discrete data GoM model, on the other hand, the
functional form of the conditional response probabilities is solely responsible for the
existence of the latent class representation.

Finally, it is worth emphasizing one more time that the developed latent class
representation of the GoM model places identical probability structure on observable
variables and hence can not possibly be distinguished from the continuous mixture
GoM model on the basis of data.
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